ACM Transactions on

Intelligent Systems and Technology (TIST)

Latest Articles

Combating Fake News: A Survey on Identification and Mitigation Techniques

The proliferation of fake news on social media has opened up new directions of research for timely identification and containment of fake news and mitigation of its widespread impact on public opinion. While much of the earlier research was focused on identification of fake news based on its contents or by exploiting users’ engagements with... (more)

Co-saliency Detection with Graph Matching

Recently, co-saliency detection, which aims to automatically discover common and salient objects appeared in several relevant images, has attracted increased interest in the computer vision community. In this article, we present a novel graph-matching based model for co-saliency detection in image pairs. A solution of graph matching is proposed to... (more)

Location-Specific Influence Quantification in Location-Based Social Networks

Location-based social networks (LBSNs) such as Foursquare offer a platform for users to share and be aware of each other’s physical movements.... (more)

Predicting Academic Performance for College Students: A Campus Behavior Perspective

Detecting abnormal behaviors of students in time and providing personalized intervention and guidance at the early stage is important in educational... (more)

Motion-Aware Compression and Transmission of Mesh Animation Sequences

With the increasing demand in using 3D mesh data over networks, supporting effective compression and efficient transmission of meshes has caught lots... (more)

CNNs Based Viewpoint Estimation for Volume Visualization

Viewpoint estimation from 2D rendered images is helpful in understanding how users select viewpoints for volume visualization and guiding users to... (more)

A Semi-Boosted Nested Model With Sensitivity-Based Weighted Binarization for Multi-Domain Network Intrusion Detection

Effective network intrusion detection techniques are required to thwart evolving cybersecurity... (more)

A Local Mean Representation-based K-Nearest Neighbor Classifier

K-nearest neighbor classification method (KNN), as one of the top 10 algorithms in data mining, is a very simple and yet effective nonparametric... (more)

Using Social Dependence to Enable Neighbourly Behaviour in Open Multi-Agent Systems

Agents frequently collaborate to achieve a shared goal or to accomplish a task that they cannot do alone. However, collaboration is difficult in open... (more)


Recent TIST News: 

ACM Transactions on Intelligent Systems and Technology (TIST) is ranked as one of the best  journals in all ACM journals in terms of citations received per paper. Each paper published at TIST in the time span (from 2010 to 2018) has received 12.8 citations  on average in ACM Digital Library.  

ACM Transactions on Intelligent Systems and Technology (TIST) has been a success story.  Submissions to the journal have increase 76 percent from 2013 to 2015, from 278 original papers and revisions to 488.  Despite this increase, the journal acceptance rate has remained at a steady rate of approximately 24 percent. Furthermore, the TIST Impact Factor increased from 1.251 in 2014 to 3.19 in 2016.  

Journal Metric (2018)

  • - Impact Factor: 3.19
  • - 5-year Impact Factor: 10.47
  • - Avg. Citations in ACM DL: 12.8 

About TIST

ACM Transactions on Intelligent Systems and Technology (ACM TIST) is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world. READ MORE

Forthcoming Articles

Measuring Conditional Independence by Independent Residuals for Causal Discovery

Local Learning Approaches for Finding Effects of a Specified Cause and Their Causal Paths

Causal networks are used to describe and to discover causal relationships among variables and data generating mechanisms. There have been many approaches for learning a global causal network of all observed variables. In many applications, we may be interested in finding what are the effects of a specified cause variable and what are the causal paths from the cause variable to its effects. Instead of learning a global causal network, we propose several local learning approaches for finding all effects (or descendants) of the specified cause variable and the causal paths from the cause variable to some effect variable of interest. We discuss the identifiability of the effects and the causal paths from observed data and prior knowledge. For the case that the causal paths are not identifiable, our approaches try to find a path set which contains the causal paths of interest.

Crowdsourcing Mechanism for Trust Evaluation in CPCS based on Intelligent Mobile Edge Computing

The combination of Cyber Physical Systems and Cloud Computing have received tremendous research interest and efforts from both academia and industry, which enables a new breed of applications and services and can fundamentally change the way that people interact with the physical world. However, due to the relative long distance between remote cloud and sensors, the Cloud Computing cannot provide real time service and fine-grained management for the end devices. Meanwhile, untrustworthy nodes may endanger the whole system. In this paper, we apply Intelligent Mobile Edge Computing to solve these problems. We first introduce the Mobile Crowdsourcing-Based Trust Evaluation Mechanism, where mobile edge users apply Artificial Intelligence to evaluate the trustfulness of sensor nodes. We then design two incentive mechanisms, i.e., Trustworthy Incentive Mechanism and Quality-Aware Trustworthy Incentive Mechanism. The first one aims to impel edge users to upload their real information about their capability and costs. The purpose of the second one is to motivate edge users to honestly conduct tasks and report results. Detailed theoretical analysis is performed to certify the effectiveness of the proposed mechanisms, which demonstrates the validity of Quality-Aware Trustworthy Incentive Mechanism from data trustfulness, effort trustfulness and quality trustfulness respectively. Extensive experiments are carried out to validate the proposed mechanisms. The results corroborate that the proposed mechanisms can efficiently stimulate mobile edge users to perform evaluation task honestly.

Short text analysis based on dual semantic extension and deep hashing in microblog

Short text analysis is a challenging task as far as the sparsity and limitation of semantics. The semantic extension approach learns the meaning of a short text by introducing external knowledge. However, for the randomness of short text descriptions in microblogs, traditional extension methods cannot accurately mine the semantics suitable for the microblog theme. Therefore, we use the prominent and refined hashtag information in microblogs, as well as complex social relationships to provide implicit guidance for semantic extension of short text. Specifically, we design a deep hash model based on social and conceptual semantic extension, which consists of dual semantic extension and deep hashing representation. In the extension method, the short text first is conceptualized to achieve the construction of hashtag graph under conceptual space. Then, the associated hashtags are generated by correlation calculation based on the integration of social relationships and concepts to extend the short text. In the deep hash model, we use the semantic hashing model to encode the abundant semantic features and form a compact and meaningful binary encoding. Finally, extensive experiments demonstrate that our method can learn and represent the short texts well by using more meaningful semantic signal. It can effectively enhance and guide the semantic analysis and understanding of short text in microblogs.

Deep Reinforcement Learning for Vehicular Edge Computing: An Intelligent Offloading System

The development of smart vehicles brings drivers and passengers a comfortable and safe environment. Various emerging applications are promising to enrich users? traveling experiences and daily life. However, how to execute computing-intensive applications on resource-constrained vehicles still faces huge challenges. In this paper, we construct an intelligent offloading system for vehicular edge computing by leveraging deep reinforcement learning. First, both the communication and computation states are modelled by finite Markov chains. Moreover, the task scheduling and resource allocation strategy is formulated as a joint optimization problem to maximize the revenue of network operators. Due to its complexity, the original problem is further divided into two sub-optimization problems. A two-sided matching scheme and a deep reinforcement learning approach are developed to schedule offloading requests and allocate network resources, respectively. Performance evaluations illustrate the effectiveness and superiority of our constructed system.

Edge-enabled Disaster Rescue: A Case Study of Searching for Missing People

In the aftermath of earthquakes, floods and other disasters, photos are increasingly playing more significant roles, such as finding missing people and assessing disasters, in disaster rescue and recovery efforts. These disaster photos are taken in real time by the crowd, unmanned aerial vehicles and wireless sensors. However, communications equipment is often damaged in disasters, and the very limited communication bandwidth restricts the upload of photos to the cloud center, seriously impeding disaster rescue endeavors. Based on edge computing, we propose Echo, a highly time-efficient disaster rescue framework. By utilizing the computing, storage and communication abilities of edge servers, disaster photos are preprocessed and analyzed in real time, and more specific visuals are immensely helpful for conducting emergency response and rescue. This paper takes the search for missing people as a case study to show that Echo can be more advantageous in terms of disaster rescue. To greatly conserve valuable communication bandwidth, only significantly associated images are extracted and uploaded to the cloud center for subsequent facial recognition. Furthermore, an adaptive photo detector is designed to utilize the precious and unstable communication bandwidth effectively, as well as ensuring the photo detection precision and recall rate. The effectiveness and efficiency of the proposed method are demonstrated by simulation experiments.

Multi-modal Curriculum Learning over Graphs

Curriculum Learning (CL) is a recently proposed learning paradigm that aims to achieve satisfactory performance by properly organizing the learning sequence from simple curriculum examples to more difficult ones. Up to now, few works have been done to explore CL for the data with graph structure. Therefore, this paper proposes a novel CL algorithm that can be utilized to guide the Label Propagation (LP) over graphs, of which the target is to ?learn? the labels of unlabeled examples on the graphs. Specifically, we assume that different unlabeled examples have different levels of difficulty for propagation, and their label learning should follow a simple-to-difficult sequence with the updated curriculums. Furthermore, considering that the practical data are often characterized by multiple modalities, every modality in our method is associated with a ?teacher? that not only evaluates the difficulties of examples from its own viewpoint, but also cooperates with other teachers to generate the overall simplest curriculum examples for propagation. By taking the curriculums suggested by the teachers as a whole, the common preference (i.e. commonality) of teachers on selecting the simplest examples can be discovered by a row-sparse matrix, and their distinct opinions (i.e. individuality) are captured by a sparse noise matrix. As a result, an accurate curriculum sequence can be established and the propagation quality can thus be improved. Theoretically, we prove that the propagation risk bound is closely related to the examples? difficulty information, and empirically, we show that our method can generate higher accuracy than the state-of-the-art CL approach and LP algorithms on various multi-modal tasks.

A Trust Computing based Security Routing Scheme for Cyber Physical Systems

Security is a pivotal issue for Cyber Physical Systems (CPS)'s development. The trusted computing base of CPS includes the complete protection mechanisms, like hardware, firmware, software, the combination of which is responsible for enforcing a system security policy. A Trust Detection Based Secured Routing (TDSR) scheme is proposed to establish secured routes from source nodes to data center under malicious environment to achieve a satisfactory security level in the Cyber Physical Systems (CPS). In the TDSR scheme, sensor node in the routing from data center sends detection routing to identify relay nodes? trust. Thus, the trust of node can be obtained, then, data packet is routed through trustworthy nodes to sink securely. In TDSR scheme, due to the detection routing is executed in those nodes who have abundant energy, the lifetime cannot be affected. Performance evaluation through simulation is carried out for success routing ratio, compromised node detection ratio, and detection routing overhead. We found that performance can be improved in TDSR compared to previous schemes.

Privacy-Aware Tag Recommendation for Accurate Image Privacy Prediction

Online images? tags are very important for indexing, sharing, and searching of images, as well as surfacing images with private or sensitive content, which needs to be protected. Social media sites such as Flickr generate these metadata from user-contributed tags. However, as the tags are at the sole discretion of users, these tags tend to be noisy and incomplete. In this paper, we present a privacy-aware approach to automatic image tagging, which aims at improving the quality of user annotations, while also preserving the images? original privacy sharing patterns. Precisely, we recommend potential tags for each target image by mining privacy-aware tags from the most similar images of the target image, which are obtained from a large collection. Experimental results show that, although the user-input tags comprise noise, our privacy-aware approach is able to predict accurate tags that can improve the performance of a downstream application on image privacy prediction, and outperforms an existing privacy-oblivious approach to image tagging. The results also show that, even for images that do not have any user tags, our proposed approach can recommend accurate tags. Crowd-sourcing the predicted tags exhibits the quality of our privacy-aware recommended tags. Our code, features, and the dataset used in experiments are available at:

Trajectory Data Classification: A Review

This paper comprehensively surveys the development of trajectory data classification. Considering the critical role of trajectory data classification in modern intelligent systems for surveillance security, abnormal behavior detection, crowd behavior analysis and traffic control, trajectory data classification has attracted growing attention. According to the availability of manual labels which is critical to the classification performances, the methods can be classified into three categories, i.e., unsupervised, semi-supervised and supervised. Furthermore, classification methods are divided into some sub-categories according to what extracted features are used. We provide a holistic understanding and deep insight into three types of trajectory data classification methods and presents some promising future directions.

Survey and cross-benchmark comparison of remaining time prediction methods in business process monitoring

Predictive business process monitoring methods exploit historical process execution logs to generate predictions about running instances (called cases) of a business process, such as the prediction of the outcome, next activity or remaining cycle time of a given process case. These insights could be used to support operational managers in taking remedial actions as business processes unfold, e.g. shifting resources from one case onto another to ensure this latter is completed on time. A number of methods to tackle the remaining cycle time prediction problem have been proposed in the literature. However, due to differences in their experimental setup, choice of datasets, evaluation measures and baselines, the relative merits of each method remain unclear. This article presents a systematic literature review and taxonomy of methods for remaining time prediction in the context of business processes, as well as a cross-benchmark comparison of 16 such methods based on 16 real-life datasets originating from different industry domains.

Large-scale Frequent Episode Mining from Complex Event Sequences with Hierarchies

Frequent Episode Mining (FEM), which aims at mining frequent sub-sequences from single long event sequence, is one of the essential building blocks for sequence mining research field. Existing studies about FEM suffer from unsatisfied scalability when facing with complex sequences as it is an NP-complete problem for testing whether an episode occurs in a sequence. In this paper, we propose a scalable, distributed framework to support FEM on ?big? event sequences. As a rule of thumb, ?big? illustrates an event sequence is either very long or with masses of simultaneous events. Meanwhile, the events in this paper are arranged in a predefined hierarchy. It derives some abstractive events which can form episodes may not directly appear in the input sequence. Specifically, we devise an event-centered and hierarchy-aware partitioning strategy to allocate events from different levels of the hierarchy into local processes. We then present an efficient special-purpose algorithm to improve the local mining performance. We also extend our framework to support maximal and closed episode mining in the context of event hierarchy, and to the best of our knowledge, we are the first attempt to define and discover hierarchy-aware maximal and closed episodes. We implement the proposed framework on Apache Spark and conduct experiments on both synthetic and real-world datasets. Experimental results demonstrate the efficiency and scalability of the proposed approach and show that we can find practical patterns when taking event hierarchies into account.

Spatio-Temporal Adaptive Pricing for Balancing Mobility-on-Demand Networks

Pricing in mobility-on-demand (MOD) networks, such as Uber, Lyft and connected taxicabs, is done adaptively by leveraging the price responsiveness of drivers (supplies) and passengers (demands) to achieve such goals as maximizing drivers? incomes, improving riders? experience and sustaining platform operation. Existing pricing policies only respond to short-term demand fluctuations without accurate trip forecast and spatial demand-supply balancing, thus mismatching drivers to riders and resulting in loss of profit. We propose CAPrice , a novel adaptive pricing scheme for urban MOD networks. It uses a new spatio-temporal deep capsule network ( STCapsNet ) that accurately predicts ride demands and driver supplies with vectorized neuron capsules while accounting for comprehensive spatio-temporal and external factors. Given accurate perception of zone-to-zone traffic flows in a city, CAPrice formulates a joint optimization problem by considering spatial equilibrium to balance the platform, drivers and riders/passengers with proactive pricing ?signals.? We have conducted an extensive experimental evaluation upon over 4 × 10^8 MOD trips (Uber, Didi Chuxing, and connected taxicabs) in New York City, Beijing and Chengdu, validating the accuracy, effectiveness and profitability (often 20% ride prediction accuracy and 30% profit improvements over the state-of-the-arts) of CAPrice in managing urban MOD networks.

Efficient User Guidance for Validating Participatory Sensing Data

Participatory sensing has become a new data collection paradigm that leverages the wisdom of the crowd for big data applications, without spending cost to buy dedicated sensors. It collects data from human sensors by using their own devices such as cell phone accelerometers, cameras, and GPS devices. This benefit comes with a drawback: human sensors are arbitrary and inherently uncertain due to the lack of quality guarantee. Moreover, participatory sensing data are time series that exhibit not only highly irregular dependencies on time but also high variance between sensors. To overcome these limitations, we formulate the problem of validating uncertain time series collected by participatory sensors. In this paper, we approach the problem by an iterative validation process on top of a probabilistic time series model. First, we generate a series of probability distributions from raw data by tailoring a state-of-the-art dynamical model, namely GARCH, for our joint time series setting. Second, we design a feedback process that consists of a adaptive aggregation model to unify the joint probabilistic time series and an efficient user guidance model to validate aggregated data with minimal effort. Through extensive experimentation, we demonstrate the efficiency and effectiveness of our approach on both real data and synthetic data. Highlights from our experiences include the fast running time of probabilistic model, the robustness of aggregation model to outliers, and the significant effort saving of guidance model.

Online Heterogeneous Transfer Learning by Knowledge Transition

In this paper, we study the problem of online heterogeneous transfer learning, where the objective is to make predictions for a target data sequence arriving in an online fashion, and some offline labeled instances from a heterogeneous source domain are provided as auxiliary data. The feature spaces of the source and target domains are completely different, thus the source data cannot be used directly to assist the learning task in the target domain. To address this issue, we take advantage of unlabeled co-occurrence instances as intermediate supplementary data to connect the source and target domains, and perform knowledge transition from the source domain into the target domain. We propose a novel online heterogeneous transfer learning algorithm called Online Heterogeneous Knowledge Transition (OHKT) for this purpose. In OHKT, we first seek to generate pseudo labels for the co-occurrence data based on the labeled source data, and then develop an online learning algorithm to classify the target sequence by leveraging the co-occurrence data with pseudo labels. Experimental results on real-world data sets demonstrate the effectiveness and efficiency of the proposed algorithm.

Recognizing Multi-Agent Plans When Action Models and Team Plans Are Both Incomplete

Multi-Agent Plan Recognition (MAPR) aims to recognize team structures (which are composed of team plans) from the observed team traces (action sequences) of a set of intelligent agents. In this paper, we introduce the problem formulation of Multi-Agent Plan Recognition based on partially observed team traces, and present a weighted MAX-SAT based framework to recognize multi-agent plans from partially observed team traces with the help of two types of auxiliary knowledge to help recognize multi-agent plans, i.e., a library of \emph{incomplete} team plans and a set of \emph{incomplete} action models. Our framework functions with two phases. We first build a set of \emph{hard} constraints that encode the correctness property of the team plans, and a set of \emph{soft} constraints that encode the optimal utility property of team plans based on the input team trace, incomplete team plans and incomplete action models. After that, we solve all the constraints using a weighted MAX-SAT solver and convert the solution to a set of team plans that best \emph{explain} the structure of the observed team trace. We empirically exhibit both effectiveness and efficiency of our framework in benchmark domains from International Planning Competition (IPC).

Using Sparse Representation to Detect Anomalies in Complex WSNs

In recent years, wireless sensor networks (WSNs) have become an active area of research for monitoring physical and environmental conditions Due to the interdependence of sensors, a functional anomaly in one sensor can cause a functional anomaly in another sensor, which can further lead to the malfunctioning of the entire sensor network. Existing research work has a way to analyse faulty sensor anomalies, but fails to show the effectiveness throughout the entire interdependent network system. The gap in research on sensor network dependency can be filled by the abnormal nodes of the sensor network. In this paper, a dictionary learning algorithm based on a non-negative constraint is developed, and further a sparse representation anomaly node detection method for sensor networks is proposed based on the dictionary learning. Compared with other anomaly detection approaches, our method is more robust. The abnormal nodes are dealt with and compared with four commonly used ways to verify the robustness of our proposed method. Furthermore, the experiments are conducted on the obtained abnormal nodes to prove the interdependence of multi-layer sensor networks and reveal the conditions and causes of a system crash.

Accounting for hidden common causes when inferring cause and effect from observational data

Hidden common causes make it difficult to infer causal relationships from observational data. Here, we consider a new method to account for a hidden common cause that infers its presence from the data. As with other approaches that can account for common causes, this approach is successful only in some cases. We describe such a case taken from the field of genomics, wherein one tries to identify which genomic markers causally influence a trait of interest.

Detecting causal relationships in simulation models using intervention-based counterfactual analysis

Central to explanatory simulation models is their capability to not just show that but also why particular things happen. Explanation is closely related with the detection of causal relationships and is, in a simulation context, typically done by means of controlled experiments. However, for complex simulation models, conventional 'blackbox' experiments may be too coarse-grained to cope with spurious relationships. We present an intervention-based causal analysis methodology that exploits the manipulability of computational models and detects and circumvents spurious effects. The core of the methodology is a formal model that maps basic causal assumptions to causal observations and allows for the identification of combinations of assumptions that have a negative impact on observability. First experiments indicate that the methodology can successfully deal with notoriously tricky situations involving asymmetric and symmetric overdetermination and detect fine-grained causal relationships between events in the simulation. As illustrated in the paper, the methodology can be easily integrated into an existing simulation environment.

All ACM Journals | See Full Journal Index

Search TIST
enter search term and/or author name